
4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.1 
 

App Inventor tutorial (V2) 

Mapping with Web services, staticmaps and streetview APIs 

using web viewer, canvas, start activity and fusion tables components 

Content 
 

 

 

1Lesson plan ............................................................................................................................................ 2 

1.1What you will learn : ...................................................................................................................... 2 

1.2What you will do : .......................................................................................................................... 3 

2Introduction :  Mapping solutions with App Inventor ........................................................................... 3 

3Review concepts used : web API, URLs, …............................................................................................. 5 

3.1What is a Web API (Application Programming Interface) ? ........................................................... 5 

1.1.URL (Uniform Resource Locator) ................................................................................................... 5 

3.1.1What is a URL and how to build it ? ........................................................................................ 5 

3.1.2Query string in a URL ............................................................................................................... 6 

3.1.3Other query formats................................................................................................................ 6 

3.1.4URL encoding ........................................................................................................................... 6 

4App inventor components and Mapping APIs....................................................................................... 8 

5Coding examples /exercises .................................................................................................................. 9 

5.1Solution 1 :  Display maps with a web viewer and web map servers ............................................ 9 

5.1.1“dynamic” maps APIs : Open street map, Google maps ......................................................... 9 

1.1.1.Coding exercise with dynamic maps and webviewer .......................................................... 10 

5.2Solution 2 :  Display map by starting an other activity (or other App)......................................... 13 

5.2.1Intent APIs and interface to other Apps on your smartphone .............................................. 13 

5.2.2Coding exercise with Intent APIs and the ActivityStarter component .................................. 14 

5.3Solution 3 :  Display with a web viewer and fusion tables ........................................................... 16 

5.3.1Fusion tables :  My pizza company, take orders and deliver worldwide .............................. 16 

5.3.2Display the fusion table maps with a Web Viewer component ............................................ 20 

5.4Solution 4 : display map with a Canvas component and the statics map API .............................. 23 

5.4.1General principles ................................................................................................................. 23 

5.4.2Matching spaces : canvas pixels, geographic lat & long and metric coordinates ................. 24 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.2 
 

5.4.3Static maps and streetview APIs ........................................................................................... 29 

5.4.4Coding exercise  with Static maps and streetview APIs ........................................................ 30 

TODO ............................................................................................................................................. 30 

5.4.5suggested solution ................................................................................................................ 30 

5.5Part 4: pan map horizontally by dragging on the map ................................................................. 31 

5.5.1TODO ..................................................................................................................................... 31 

5.5.2suggested solution ................................................................................................................ 32 

5.6Part 5 : add streetview display as a new map type ...................................................................... 32 

5.6.1TODO ..................................................................................................................................... 32 

5.6.2suggested solution ................................................................................................................ 33 

5.7part 6 (optional) : display a list of markers on the map ............................................................... 33 

5.7.1TODO ..................................................................................................................................... 33 

5.7.2suggested solution ................................................................................................................ 34 

5.8part 7 (optional) : make your display routine generic and reusable ............................................ 34 

6Appendix .............................................................................................................................................. 34 

6.1Reminder on a few good practices ............................................................................................... 34 

6.1.1CONSTANTS and variables ..................................................................................................... 34 

6.1.2Procedures an local variables ................................................................................................ 35 

6.1.3Ordering blocks on screen ..................................................................................................... 35 

6.2General Definitions ....................................................................................................................... 38 

6.2.1Web API : Application Programming Interface (written from Wikipedia) ............................ 38 

6.2.2What is a URL (Uniform Resource Locator) and how to build it ........................................... 38 

6.2.3the Query string within a URL : (written from Wikipedia) .................................................... 39 

6.2.4the Query string within a URL : (written from Wikipedia) .................................................... 39 

6.2.5URL encoding ......................................................................................................................... 40 

 

 

1 Lesson plan 

1.1 What you will learn :  

o What is a Web API (Application Programming Interface) 

o What is a URL (Uniform Resource Locator) and how to build it 

o Mapping resources on the web or in the cloud : 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.3 
 

o Mapping APIs 

 Interactive Web maps (open street map, Google maps, …) 

 Staticmaps and streetview APIs,  

o Web Databases with mapping capabilities  

 fusion tables 

o Display interactive maps with the Webviewer and a map URL, 

o Display map with the Start Activity Component, using a secondary mapping App, 

o Display map in a WebViewer, and fusion tables with Web data management,  

o Display static maps with the Canvas component, and build interactions from you App, 

o Display streetview and visit buildings, 

o discuss pros and cons for each solution, 

o Optional : Review a few “good practices” (see appendix) 

1.2 What you will do :  

1. Introduction : Review mapping solutions with App Inventor 

2. Review  concepts that will be used (URL, URL encoding) 

3. Coding exercises 

o Sol. 1 : display a dynamic map with a Webviewer component and URL, 

o Sol. 2 : display map with the StartActivity component and a second mapping App, 

o Sol. 3 : display map with Webviewer and fusion tables with web data sharing, 

o Sol. 4 : display static maps with a Canvas component and interact from your App, 

o Sharable utilities : Key service functions when mapping 

o Sol. 4a : display a list of markers on the map 

o Sol. 4b : extend interaction levels with the canvas component 

o Sol. 4d : extend to streetview display and visit buildings 

2 Introduction :  Mapping solutions with App Inventor 
 

App Inventor lets us go mobile AND  enables to build “location aware”  Apps which can display  and 

interact with our spatial environment : build games like Pokemon Go or  services like pizza delivery 

management or manage a fleet of vehicles like Uber.  

These apps will generally require 3 kinds of services : 

1. Mapping (with Open streetMap, google Maps or  other services),  



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.4 
 

2. Geolocation, indoors or outdoors with GPS, network, SSID, IP, … 

3. Web sharing of structured databases (customers, orders, drivers, pokemons, …) 

This tutorial, deals with the first subject : mapping (we look at other ones in other tutorials). You will 

find a draft tutorial on Geolocation at http://www.letustry.org/AppInventor/mapping/GPSTutorial/ 

(and tutorial on web data sharing with fusion tables should popup sometime). 

-0- 

App Inventor offers many different ways to do mapping with very different capabilities. We will 

consider 4 of them : 

1. Mapping with a web viewer component and Open street Map or Google maps services, 

2. Mapping with the “Start Activity”  component and the Google maps App, 

3. Mapping with a Web viewer component, fusion tables and web data management,  

4. Mapping with a Canvas component with static maps and streetview APIs. 

These four techniques enable VERY different App capabilities  : 

1. Mapping with a Webviewer and WebMap Services is probably the fastest and most simple.  

It provides good  Map display with dynamic web interaction, but has poor capabilities to 

incorporate user’s data and does not allow feedback from the map back to the App. 

2. Mapping with the Start Activity has similar capabilities and limitations but offers a nicer set 

of display options with a well-documented Application Programming Interface. Your App 

disappears once the map display activity starts (and comes back when you quit display). 

These solutions are fine if your requirement is to use map display for interactive output only 

(directions, locations, …) with limited user data.  This is the case for many Apps, and you will find very 

nice and popular Apps in the gallery, such as “find my car” which use these techniques. 

We will have a closer look at solutions 3 and 4 which enable two-way interactions between maps and 

App data. These interactions are key for games where there is some “action” in the map (like 

Pokemons) or for business App that interact with fleets of vehicles (like UBER or pizza deliveries). 

 

3. Mapping with fusion tables and a webviewer : The choice here is to use cloud services (fusion 

tables) to manage data AND maps. Fusion tables enable management and Cloud sharing of 

data for multiple players. This goes with powerful query capabilities (SQL like), which are 

necessary to handle interconnected data. Fusion tables also have mapping capability. This 

solution is fit to run  small databases (ex : customers, orders, fleet of vehicles,  deliveries, …). 

Note here that Mapping AND data management are subcontracted to cloud services. They will still be 

handled by YOU, but outside App Inventor. 

http://www.letustry.org/appinventor/mapping/GPSTutorial/


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.5 
 

4. Mapping with a Canvas and static APIs : the choice here is to keep full control inside the App, 

and manage all interactions with the canvas component. In this case, maps are handled as 

image files. Interactions are unlimited but you have to write code for each interaction : this 

powerful solution comes naked. We will provide reusable code to help (ex : translate pixel 

coordinates to geographic coordinates, measure distances in km, zoom, pan, etc.) but there 

is still more work to do than with solutions 1 and 2. This solution is fit for Pokemon like 

games, or when you need two-way interactions between App and map.   

Solution 4 has very nice extensions such as streetview, for walking in the streets and inside buildings. 

This can be great for “treasure finding”  games (but requires some good maths). 

 

3 Review concepts used : web API, URLs, … 
If you know about APIs, URLs and associated practices and rules, you may skip this chapter. 

Otherwise, run through it a first time to be aware of what is inside, but do not spend too much time. 

You will come back to it later as you need. 

3.1 What is a Web API (Application Programming Interface) ?  

"Web API" historically has been virtually synonymous for “web service”. It describes the 

functionalities that a web service makes available and how:  routines, protocols, inputs, outputs, …   

APIs are one of the most common ways technology companies integrate with each other. 

In the context of web development, an API is typically defined as a set of Hypertext Transfer Protocol 

(HTTP) request messages, along with a definition of the structure of response messages1.  

Note :  HTTP requests frequently return html web pages. They can be displayed with a web viewer 

component. Staticmaps and streetview APIs only return images. In this case, they can also be 

displayed on a Canvas component as image files. 

The request message which is sent on the Web takes the form of a URL (Uniform Resource Locator) 

described below.  (see more info in appendix) 

3.2 URL (Uniform Resource Locator) 

3.2.1 What is a URL and how to build it ? 

A URL, or commonly a web address, is a reference to a web resource that specifies its location on the 

net and a mechanism to retrieve it. URLs most commonly reference web pages (http), but are also 

used for file transfer (ftp), email (mailto), database access (JDBC), and other applications. 

For example URLs used for static maps use http and contain :  

 a scheme (http),  

 a host (maps.googleapis.com),  

                                                           
1
 which is usually in an Extensible Markup Language (XML) or JavaScript Object Notation (JSON) format 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.6 
 

 a path (/maps/api/staticmap)  

 and a query  : 

(ex : center=37.7,-122.4&size=320x320&zoom=14&maptype=roadmap), 

     https://maps.googleapis.com/maps/api/staticmap?center=37.77,-122.45&size=320x320&zoom=14&maptype=roadmap 

scheme,//,               host                 ,                path             ,                  query               

3.2.2 Query string in a URL  

The query string is the part of a URL, which carries the specification of what is requested as the 

returned result. It comes after the host and path and generally follows the question mark “?” and is 

encoded as field/value pairs separated by & delimiters : 

  field1=value1&field2=value2&field3=value3... 

The query fields and values are defined by each service provider in its API. For example in the 

following URL (which you can copy/paste into your web browser address), the query string is what 

follows the question mark. The delimiter between attribute-value pairs is ‘&’ 

https://maps.googleapis.com/maps/api/staticmap?center=37.777,-122.451&size=320x320&zoom=14&maptype=roadmap 

In this example the field named “center” has the value “37.777,-122.451” and the field named “size” 

has the value “320x320”. 

When a field has multiple values, another delimiter is often used. For example, the ‘|’ character 

separates coordinate values in the static maps API, as in the following list of marker coordinates : 

&markers=color:blue|label:x|37.78,-122.46|37.77,-122.46|37.78,-122.45 

3.2.3 Other query formats 

We will meet other query formats where parameters do not follow a question mark. This is the case 

for open street maps or google maps : 

http://www.openstreetmap.org/#map=17/48.83577/2.30503&layers=H 

https://www.google.fr/maps/@37.7760491,-122.4488144,16.9z 

But the URL organization remains similar and you should have no difficulty to handle them. 

3.2.4 URL encoding 

Some characters have a special meaning in a URL or in html they are “reserved characters”. For 

example, the space character is a separator for HTTP messages, so that we cannot use it within query 

parameters such as someone’s  address. 

Such characters are forbidden or “reserved” characters that must be replaced when they are used in 

the query by %  and their hexadecimal value (see tables below). Replacement is mandatory with 

“reserved characters” and recommended for other characters which are neither “reserved” or “Non 

reserved”. The space character (which is the most frequent) may also be replaced by ’+’. 

https://maps.googleapis.com/maps/api/staticmap?center=37.77,-122.45&size=320x320&zoom=14&maptype=roadmap
https://maps.googleapis.com/maps/api/staticmap?center=37.777,-122.451&size=320x320&zoom=14&maptype=roadmap
http://www.openstreetmap.org/#map=17/48.83577/2.30503&layers=H
https://www.google.fr/maps/@37.7760491,-122.4488144,16.9z
https://en.wikipedia.org/wiki/Character_%28computing%29


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.7 
 

Values for reserved characters after percent-encoding – mandatory   

! # $ & ' ( ) * + , / : ; = ? @ [ ]   

%21 %23 %24 %26 %27 %28 %29 %2A %2B %2C %2F %3A %3B %3D %3F %40 %5B %5D   

 

Values for other (neither reserved or non reserved) – recommended but non mandatory 

Newline space " % - . < > \ ^ _ ` { | } ~ 

%0A or %0D or %0D%0A %20 %22 %25 %2D %2E %3C %3E %5C %5E %5F %60 %7B %7C %7D %7E 

(see more info in appendix) 

For example,  

&markers=color:blue|label:x|37.78,-122.46|37.77,-122.46|37.78,-122.45 

Should be replaced by 

&markers=color:blue%7C label:x%7C 37.78,-122.46%7C 37.77,-122.46%7C 37.78,-122.45 

and 

“University of San Francisco” should be replaced by “University%20of%20San%20Francisco”   

or by  “University+of+San+Francisco” 

 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.8 
 

4 App inventor components and Mapping APIs 
 

 the “webViewer” component can display web pages in general, like a browser :   
http://ai2.appinventor.mit.edu/reference/components/userinterface.html#WebViewer  

The webviewer component can be associated with several APIs. We will illustrates it’s use in 2 

solutions : 

 dynamic maps from Web services (solution 1) 

 with fusion tables (solution 3) 

 

 the “canvas” component can only display image files, but if a URL returns a file, then this URL can 

be used exactly like a local image file name  !  

The canvas component can be associated with several APIs, and we will illustrate its use with the 

google Maps and streetview static API (solution 4) 

 

 The Activity Starter component can start a new App or activity such as Google Maps, and tell it 

what to do with a DataURI. This API is the Intents API. 

We will illustrate its use with the google Maps  App (solution 2) 

 

Besides showing what a secondary App can do, we will show examples with the web viewer and the 

canvas to understand what each one can do and how they differ : 

 the webviewer component is very general, but the App loses control on window events. 

What is nice is that you have the web server interactivity, 

 The backdoor solution to recover control with a web viewer is to manage data and mapping 

on the cloud side : this is what App Inventor can do with fusion tables do, 

 the canvas component has no native functions for mapping, but it keeps control on window 

events (click,drag, …), so  that you can decide to do whatever you want on each event (but 

you have to do the coding work) 

We may also mention, the “Web” component which has blocks to query and process web data. We 

will not use it, but if you wish, look at the tutorial here 
http://appinventor.mit.edu/explore/ai2/stockquotes.html 

 

 

5 Coding examples /exercises 
We will see 4 different ways to do mapping. They are independent and you can go directly to the 

method that seems to fit your needs. 

http://ai2.appinventor.mit.edu/reference/components/userinterface.html#WebViewer
https://developers.google.com/maps/documentation/static-maps/intro
https://developers.google.com/maps/documentation/android-api/intents#display_a_map
http://appinventor.mit.edu/explore/ai2/stockquotes.html


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.9 
 

5.1 Solution 1 :  Display maps with a web viewer and web map servers 

5.1.1 “dynamic” maps APIs : Open street map, Google maps 

You will find several map servers on the web including open street map, USGS, IGN or Google maps. 

They return dynamic web pages (i.e. not image files) and cannot be used with the canvas component. 

They need  a web viewer. 

 A simple (and fun) thing to do is to test them on your web browser. Go to the Open Street Map or 

Google maps server and look at the URLs to see how they are built. Start to play with location values 

(longitude and latitude), map scale, theme. Then copy/paste a sample URL in your App Inventor 

program, write blocks to change URL content  and set it as the  Webviewer’s URL, for example : 

 Open street map URL, where you easily see zoom, latitude, longitude and layers 

http://www.openstreetmap.org/#map=17/48.83577/2.30503&layers=H 

http://www.openstreetmap.org/#map=16/37.7761/-122.4510&layers=HD 

 Or the URL displayed with Google map where you can easily see how to write a request with, 

lat, long and zoom :  

https://www.google.fr/maps/@37.7760491,-122.4488144,16.9z 

(note :  

 make sure that  you set the width and height of your webviewer component to a specific value 

or fill parent  - NOT automatic - otherwise it will not display correctly. “Automatic” width and 

height work with images but not with dynamic pages in general. 

Also uncheck the scrollable property on your Scrren1 component). 

http://www.openstreetmap.org/#map=17/48.83577/2.30503&layers=H
http://www.openstreetmap.org/#map=16/37.7761/-122.4510&layers=HD
https://www.google.fr/maps/@37.7760491,-122.4488144,16.9z


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.10 
 

 

5.1.2 Coding exercise with dynamic maps and webviewer 

Goal : Add a Webviewer component and fill in the display procedure. Test display and interaction 

with map.  Check that you can build the URL with blocks and data from your App. 

1. Go to Open Street  Maps (https://www.openstreetmap.org) zoom around your area of interest 

and look at the URL adresses to identify the zoom, latitude and longitude in URL. 

https://www.openstreetmap.org/#map=18/48.85302/2.34973&layers=C 

Change zoom, latitude and longitude values and check what works. 

2. Try the same with Google maps, look at the URL addresses as you move around or select options  

https://www.google.com/maps/

 https://www.google.com/maps/@48.8589163,2.3277139,13z 

https://www.google.com/maps/@48.8531755,2.3498957,18z/data=!3m1!1e3 

https://www.google.com/maps/place/eiffel+tower 

https://www.google.com/maps/dir/Eiffel+tower/Notre+Dame+de+Paris/ 

Google adds more information to your URL when you send it, but the short version works and is 

easier to code. When editing URLs, Remember about reserved characters, replace spaces by +   

3. Open App Inventor and create a new project.  

Add a Webviewer component called WebviewerMap.  Check Fillparent for width 

and height and Check the uses location property.  Set Home URL to the first address 

above : https://www.google.com/maps/ or other preferred value. 

Note : Google’s basic URL with no location will use your location as default if your 

smartphone has location enabled and if your browser allows location sharing 

(disable it if you worry about privacy). 

(Uncheck the Scrollable property of the Screen1 component, and check the 

responsive sizing property for maps with higher resolution).   

Add a ButtonUpdate button to  update map and a text box TextBoxMapURL  

to display the Map URL. Check the multiline property and set text to another 

URL such as : https://www.google.com/maps/@48.8589163,2.3277139,13z ) 

On the blocks side, set the URL to the Textbox text in the button click handler. 

 

 

 

Run your app. Check  interaction with the web window (ex : zoom-unzoom with 2 fingers, switch to 

satellite or traffic maps, …). Click update. Edit zoom factor and/or latitude and longitude in the text 

box, … You have control of the web window from your App and within the window itself.  

https://www.openstreetmap.org/
https://www.openstreetmap.org/#map=18/48.85302/2.34973&layers=C
https://www.google.com/maps/
https://www.google.com/maps/
https://www.google.com/maps/@48.8589163,2.3277139,13z
https://www.google.com/maps/@48.8531755,2.3498957,18z/data=!3m1!1e3
https://www.google.com/maps/place/eiffel+tower
https://www.google.com/maps/dir/Eiffel+tower/Notre+Dame+de+Paris/
https://www.google.com/maps/
https://www.google.com/maps/@48.8589163,2.3277139,13z


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.11 
 

4. Now re-Build the URL with program blocks what you did by hand :  

You can build the URL from latitude longitude, zoom and other variables from your App (for example 

a list of places), then update the Webviewer URL, which will update display. Building the URL will be 

different according to the Web server you choose.   

The example below shows how to use either to Open street Map or Google according to the 

MapServer variable. The Web Viewer URL is returned by the MapURL procedure which calls  

mapURLOSM for open street map and MapURLGoogle for Google map server. 

Replace previous blocks by the following : 

   

  

Which will display (on update map) : 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.12 
 

               

Note that zoom factors are not the same for all servers. 

If you wish, you can then add buttons to zoom/unzoom or pan left/right/up/down from your app : 

  

But it is slow and much less practical than interacting with the Web window directly. 

(We will come back to this type of interactions when using the canvas component). 

 

 

5.2 Solution 2 :  Display map by starting an other activity (or other App) 

5.2.1 Intent APIs and interface to other Apps on your smartphone 

With this solution, your App delegates mapping to another App that must be installed on your phone 

(here the Google maps App).  The general idea of an “Intent” request is that an android App throws 

an intent (i.e. something it wishes to do) to the Android system and waits for some Apps to answer ”I 

can do it”. If there is only one App, it will start, otherwise it will let you choose between candidates 

do the job. That’s funny, Android Apps can behave like students in class when one calls for help, and 

others who know how  propose to help ! 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.13 
 

In our case, we will ask for a VIEWing action (android.intent.action.VIEW). This with the data URI may 

be enough for Android to find the good App (as it is the case on my Nexus) but besides action and 

data URI it is better to say more precisely what service the App wants, or be more explicit. 

With Activity Starter, you can indicate 3 infos : Action (android.intent.action.VIEW), Class 

(android.maps.MapsActivity) and Package (com.google.android.apps.maps). Activity action, class and 

package will help Android identify the App that will answer the request. Then your requesting App 

will pass the “Data URI” to the answering App to tell it what to do.  

This Data URI must match the API of the answering App. In our case with Google maps, the API and 

data URIs are described here. They may be like : geo:0,0?q=latitude,longitude(label)  

We will see details of this API when we use it below. 

If you want to know more you will find : 

 a nice video tutorial by Ralph Morelli within the mobile CSP course (see lesson 10 in unit 3) with 

this Youtube video to show the App and this Youtube video to show how to build it, 

 a nice App on the playstore which may help you practice and find solutions with App Inventor is 

the App Inventor ActivityStarter App. It may help you fill in parameters for the Activity starter 

component (even if you do not completely understand what you are really doing). 

 

5.2.2 Coding exercise with Intent APIs and the ActivityStarter component 

If you have Apps like Google maps installed on you smartphone, you can start it from your app with 

an ActivityStarter component (see in the Connectivity drawer). There are 2 main differences with 

previous solution : 

1.  your own App disappears while the new activity or App is running. This means that your App has 

completely lost control and can no longer interact until you close map display, 

2.  but you have more display options and there is a good documentation of API available at 

https://developers.google.com/maps/documentation/android-api/intents#display_a_map. 

Create a new project,  

on the design side : 

Add a display button and set its text displayMap.  

Add a StartActivity component with the following setup :  

Action :  android.intent.action.VIEW 

Activity Class :  android.maps.MapsActivity 

Activity Package :  com.google.android.apps.maps 

This will enable Android to find the application that matches 

these criteria (e.g. Google maps that has to be on your phone).  

On the blocks side : 

https://developers.google.com/maps/documentation/android-api/intents#display_a_map
https://ram8647.appspot.com/mobileCSP/course
https://www.youtube-nocookie.com/embed/PuXQRNjQOK0?rel=0
https://www.youtube-nocookie.com/embed/ks6klg9EZBo?rel=0
https://play.google.com/store/apps/details?id=appinventor.ai_mletsch80.AppInvActivityStarter
https://developers.google.com/maps/documentation/android-api/intents#display_a_map


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.14 
 

Initialize latitude, longitude and zoom global variables with default values, and add a query variable. 

Then we build the data URI, according to the first case shown in the documentation. 

geo:latitude,longitude?z=zoom 
 

Clicking on the button will display the map on the right : 

The google maps Android-Intent API offers many other options (see documentation) : 

1. geo:latitude,longitude?z=zoom basic display 
2. geo:latitude,longitude?q=query to add search for restaurant, hospital 
3. geo:0,0?q=my+street+address  to find by address 
4. geo:0,0?q=latitude,longitude(label)  to add a label 
5. google.navigation:q=a+street+address to find directions with different travel modes 
6. google.navigation:q=latitude,longitude 

 &mode=d or w or b  for travel option : drive, walk ,bike 
    and for streetview : 
7. google.streetview:cbll=latitude,longitude&cbp=0,bearing,0,zoom,tilt 

8. google.streetview:panoid=id&cbp=0,bearing,0,zoom,tilt 

 

Cases 1 to 7 are illustrated below them with their dataURIs. 

       

0   

https://developers.google.com/maps/documentation/android-api/intents#display_a_map


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.15 
 

          

 

The code - shown below -uses a list of 7 dataURIs. Display switches from one to the next each time 

the user clicks on the display button. 

 

5.3 Solution 3 :  Display with a web viewer and fusion tables 

We are now switching to a new world where data management and mapping are in the cloud. 
We will have two separate developments, one in the cloud to manage-serve data and build maps, 
and second one inside App Inventor to hold basic App algorithms and display map in Web viewer. 
 
Our goal here is not to make a tutorial on fusion tables, so we will mainly use an existing table : 

 to hold the list of registered pizza customers with their name, address and location 
https://www.google.com/fusiontables/DataSource?docid=1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC 
 
Within an optional exercise, we will also use : 

 to hold the list of orders with customer name, pizza and drink 
https://www.google.com/fusiontables/DataSource?docid=1-WStaXfak4yGpXMibqX9TfSNSMamSNycsfozTpHd 

 

 PizzaMergeOrdersAndCustomers, which merges or joins orders and customers on 
name 

https://www.google.com/fusiontables/DataSource?docid=1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC
https://www.google.com/fusiontables/DataSource?docid=1-WStaXfak4yGpXMibqX9TfSNSMamSNycsfozTpHd


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.16 
 

https://www.google.com/fusiontables/DataSource?docid=1Om-ntvLmRaZ63iR4YdqKABbZWjMBcsTy7Fq2VKmh 

 
These tables have been shared with anyone having the link in the fusion table sharing parameters. 
You can click or copy/paste each one of the fusion tables URL to open it and see what is inside. 
 
Now, let us start with preparing the map on the cloud side. 
 

5.3.1 Fusion tables :  My pizza company, take orders and deliver worldwide 

You are now running a pizza company, that has worldwide customers with name and address. Your 

customers order pizzas to be delivered at their location. You and your customers want to monitor on 

a map what’s going on : where’s my pizza ? is it on its way ? when will I eat ? 

What data that we have to handle : 

 customers with : 
name, address and/or latitude-longitude and other fields which you may need, such as distance 
to the pizza bakery. 

 orders  (taken by customers) with : 
date of order, name of customer, pizza ordered, drink, comment and delivery status (ordered, 
on- delivery, or delivered) 

 
Tables below illustrate the beginning of corresponding fusion tables for customers and orders. 
 

     
 
We will do mapping of customers, then mapping of orders as an option.  

One click mapping of  customers :  click on the Map of Location tab  and here is your map ! 
 

https://www.google.com/fusiontables/DataSource?docid=1Om-ntvLmRaZ63iR4YdqKABbZWjMBcsTy7Fq2VKmh


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.17 
 

 
 
This one click mapping works because Customers have a location criteria which can be either 

(latitude + longitude) or address :  

 

 

Here we have chosen latitude and longitude as location criteria for performance and privacy reasons. 

(We did not want addresses to travel continuously over the web, nor to translate addresses to geo-

locations at each request). 

Here, you can see that address is typed as “text” and Latitude as “location” with Longitude as 

secondary location info. It may be easier for you to use address as the location criteria. 

NOTE :  This table is used by an App which is in the Gallery (“Pizza delivery Mapping with Fusion 

Tables” by pierre.huguet50@gmail.com) what this App does is to : 

1. convert address to geo locations when creating or updating customer info, 

2. compute distance to pizza shop as last attribute, so that it can be a query parameter. 

 

Then we can add query criteria such as distance or name content :  

 In the Map of location tab, Click on the Filter button  

mailto:pierre.huguet50@gmail.com


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.18 
 

 Select an attribute on where you want a filter, for example : Address 

 Insert criteria, for example : Paris 

 Then click : Find  

 only customers with “Paris” in their address will be displayed 

 Try again with distance between 0 and 1000 km and name 

containing “Ma” * 

 selection changes, we have customers outside of Paris, 

but within 1000 km and their name contains “ma”  

Last thing to do, before we go back to App Inventor, is to catch the URL which holds this map. 

 Go back to your fusion table main screen, 

 Click on the Map of location tab to display map, 

 Adjust to your area of interest and zoom factor, 

 Adjust your criteria (or insert all you may need) 

(we have kept distance and address here) 

 Then click on the Tools tab and Publish option 

 and copy and save the link for the Webviewer 

 You can also check that it works in a browser 

For our example, we get this URL : 

https://fusiontables.google.com/embedviz?q=select+col2+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+w

here+col6+%3E%3D+0+and+col6+%3C%3D+1000+and+col1+contains+ignoring+case+'Paris'&viz=MAP&h=false&lat=48.

832371363477534&lng=2.33880412470695&t=1&z=12&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG 

Let’s look at it closer (we have replaced <,>, = characters by their readable value) 

URL scheme, host  and  path https://fusiontables.google.com/embedviz? 
Start of query q=  

Select columns or attribute select+ col2 

From TABLE_ID +from+ 1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC 

Where clause (optional) +where+ 
+and+ 

col6+>=+0+and+col6+<=+1000 
col1+contains+ignoring+case+'Paris' 

Map display type &viz= MAP 

 &h= false 

Center latitude &lat= 48.832371363477534 

Center longitude &lng= 2.33880412470695 

 &t= 1 

Zoom factor &z= 11 

column for location &l= col2 

 &y= 2 

Template &tmplt= 2 

Location type (Latitude, longitude) &hml= TWO_COL_LAT_LNG 

Where we see the data query criteria (SQL like) followed by the display parameters.  

OPTIONAL Exercise  : How can we get a map of orders ?  

https://fusiontables.google.com/embedviz?q=select+col2+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+col6+%3e%3D+0+and+col6+%3c%3D+1000+and+col1+contains+ignoring+case+'Paris'&viz=MAP&h=false&lat=48.832371363477534&lng=2.33880412470695&t=1&z=12&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG
https://fusiontables.google.com/embedviz?q=select+col2+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+col6+%3e%3D+0+and+col6+%3c%3D+1000+and+col1+contains+ignoring+case+'Paris'&viz=MAP&h=false&lat=48.832371363477534&lng=2.33880412470695&t=1&z=12&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG
https://fusiontables.google.com/embedviz?q=select+col2+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+col6+%3e%3D+0+and+col6+%3c%3D+1000+and+col1+contains+ignoring+case+'Paris'&viz=MAP&h=false&lat=48.832371363477534&lng=2.33880412470695&t=1&z=12&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG
https://fusiontables.google.com/embedviz


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.19 
 

Try the same with the orders fusion table : open it and  click on the Map of Location tab.  

This does not work  : display tells you that this table has no location … 

 

 
 
 
That’s right, orders have no location by themselves, they must be delivered at customer’s location, 

and this information is in the customers table. 

The trick, to solve this problem is to Merge the orders and customers table to get a third one that will 

contain orders data AND location of customers. This will be a dynamic table which will be 

automatically updated when you add, remove or modify  a customer or an order : 

In the orders table, click on the merge command in the file tab, and merge with the customers table, 

with the name as the source for matching on both sides.  

This creates a new table Merge of Customers and orders where we find : 

 
Now click  on the Map of Latitude tab and the Map will show orders.  

If you add a filter on the pizza delivery status (ex : check Ordered or 

onDelivery and uncheck Delivered pizzas),  only those will show.  

If you further click, on an order, you will see all its details. 

You may also colour icons according to a numeric variable, but 

tis exceeds the scope of the current tutorial (see the fusion 

tables tutorial). 

5.3.2 Display the fusion table maps with a Web Viewer 

component 

Would you take this bet ? build an interactive mapping App with no blocks !!! 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.20 
 

Open App Inventor and create a new project, then add a web viewer component, set its width and 

height to fill parent, set the Home URL to the URL you saved previously : 

https://fusiontables.google.com/embedviz?q=select+col2+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+w

here+col6+%3E%3D+0+and+col6+%3C%3D+1000+and+col1+contains+ignoring+case+'Paris'&viz=MAP&h=false&lat=48.

832371363477534&lng=2.33880412470695&t=1&z=12&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG 

Run the App !  

(No blocks, we won the bet)                       

 

You can interact with the map : click on 

customer icons to get their name and 

address, zoom, pan, switch to satellite 

display or  go to streetview with the 

pegman … ! 

 

Now let us go back to the URL and see how we can modify it with program blocks.  

Here we have added a second URL (from the fusion table “Rows” tab) to display data in list format. 

Within the SQL query (select,where and order by) we have replaced col0, col1, col2, col4 and col6 by 

their attribute name : Name, Address, Latitude, Longitude, Distance.  

  MAP DISPLAY URL LIST DISPLAY URL 
URL scheme, host, path  https://fusiontables.google.com/embedviz? https://fusiontables.google.com/embedviz? 
Start of query q=   

Select cols or attribute +select+ Latitude Name,+Address,+Latitude,+Longitude,+Distance 

From TABLE_ID +from+ 1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC 1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC 
Where clause (optional) 
And …(other condition) 

+where+ 
+and+ 

Address+contains+ignoring+case+'Paris' 
Distance>=0+and+Distance<=1000 

Address+contains+ignoring+case+'Paris' 
Distance>=0+and+Distance<=1000 

Order by clause (option) +order+by+  Name+asc 

Center latitude &lat= 48.832371363477534 48.832371363477534 

Center longitude &lng= 2.33880412470695 2.33880412470695 

Zoom factor &z= 11  

Map display type &viz= MAP GVIZ 

 &t= 1 TABLE 

 &h= false  

 column for location &l= col2  

 &y= 2  

Template &tmplt= 2  

Location type lLat, long) &hml= TWO_COL_LAT_LNG  

Container Id &containerId=  googft-gviz-canvas 

 

Notes : 

. you can change orders between URL parameters separated by &. 

. we have kept the + encoding of space in this table to show where blank spaces are (they must be 

replaced before calling Uri Encode)  

Note : you may want to code the URL with readable characters (instead of 

“reserved characters” translated  into %3D …), in which case you can ask 

App Inventor to do the URL encoding with the Uriencode procedure.  

(I usually don’t do it, because addresses copied from  fusion tables are already encoded    

https://fusiontables.google.com/embedviz?q=select+col2+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+col6+%3e%3D+0+and+col6+%3c%3D+1000+and+col1+contains+ignoring+case+'Paris'&viz=MAP&h=false&lat=48.832371363477534&lng=2.33880412470695&t=1&z=12&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG
https://fusiontables.google.com/embedviz?q=select+col2+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+col6+%3e%3D+0+and+col6+%3c%3D+1000+and+col1+contains+ignoring+case+'Paris'&viz=MAP&h=false&lat=48.832371363477534&lng=2.33880412470695&t=1&z=12&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG
https://fusiontables.google.com/embedviz?q=select+col2+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+col6+%3e%3D+0+and+col6+%3c%3D+1000+and+col1+contains+ignoring+case+'Paris'&viz=MAP&h=false&lat=48.832371363477534&lng=2.33880412470695&t=1&z=12&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG
https://fusiontables.google.com/embedviz
https://fusiontables.google.com/embedviz


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.21 
 

So that we have these 2 URLs to test in a program : 

MAP display URL 

https://fusiontables.google.com/embedviz?q=select+Latitude+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_s

C+where+Distance>=+0+and+Distance<=+1000+and+Address+contains+ignoring+case+'Paris'&lat=48.8323713634775

34&lng=2.33880412470695&z=12&viz=MAP&h=false &t=1&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG 

List Display URL 

https://fusiontables.google.com/embedviz?q=select+Name,+Address,+Latitude,+Longitude,+Distance+from+1t6jqUO

84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+Address+contains+ignoring+case+'Paris'+and+Distance+>=+0+and+

Distance+<=+1000+order+by+col0+asc&viz=GVIZ&t=TABLE&containerId=googft-gviz-canvas 

Note that we are using reserved characters but these links should still work as long as you keep + 

instead of ‘space’. (In fact you should replace , = < > by their URL encoding) 

OK, let us code these cases and enable program : 

 Open previous App inventor display project 

which had no block 

 create a procedure that computes the URL 

and start with the previous URL value 

 Check that it (still) works by setting the 

Webviewer URL on screen initialize 

 Then break down the URL into  manageable 

pieces, and build it with joins in the procedure 

Note : do this with step by step (checking at each 

step) to avoid headaches with errors  

 Replace initial values by variables  (for later change by program blocks), check that it works 

 

https://fusiontables.google.com/embedviz?q=select+Latitude+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+Distance%3e=+0+and+Distance%3c=+1000+and+Address+contains+ignoring+case+'Paris'&lat=48.832371363477534&lng=2.33880412470695&z=12&viz=MAP&h=false%20&t=1&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG
https://fusiontables.google.com/embedviz?q=select+Latitude+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+Distance%3e=+0+and+Distance%3c=+1000+and+Address+contains+ignoring+case+'Paris'&lat=48.832371363477534&lng=2.33880412470695&z=12&viz=MAP&h=false%20&t=1&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG
https://fusiontables.google.com/embedviz?q=select+Latitude+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+Distance%3e=+0+and+Distance%3c=+1000+and+Address+contains+ignoring+case+'Paris'&lat=48.832371363477534&lng=2.33880412470695&z=12&viz=MAP&h=false%20&t=1&l=col2&y=2&tmplt=2&hml=TWO_COL_LAT_LNG
https://fusiontables.google.com/embedviz?q=select+Name,+Address,+Latitude,+Longitude,+Distance+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+Address+contains+ignoring+case+'Paris'+and+Distance+%3e=+0+and+Distance+%3c=+1000+order+by+col0+asc&viz=GVIZ&t=TABLE&containerId=googft-gviz-canvas
https://fusiontables.google.com/embedviz?q=select+Name,+Address,+Latitude,+Longitude,+Distance+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+Address+contains+ignoring+case+'Paris'+and+Distance+%3e=+0+and+Distance+%3c=+1000+order+by+col0+asc&viz=GVIZ&t=TABLE&containerId=googft-gviz-canvas
https://fusiontables.google.com/embedviz?q=select+Name,+Address,+Latitude,+Longitude,+Distance+from+1t6jqUO84hs4S1Di3KmAr4EDJiRvwBluNO1mqJ_sC+where+Address+contains+ignoring+case+'Paris'+and+Distance+%3e=+0+and+Distance+%3c=+1000+order+by+col0+asc&viz=GVIZ&t=TABLE&containerId=googft-gviz-canvas


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.22 
 

On the design side : 

 Add horizontal arrangement with 2 buttons to switch to Map or List display, 

 Add horizontal arrangement, labels and textboxes for min and Max distance criteria (check 

numbers only property and set default values to valid values 0 and 21000), 

 Add horizontal arrangement with label and textbox for text criteria on address (check that 

default text is the empty string), 

 Add textbox to show (and check URL) with multiline enabled 

Go back to the blocks side : 

 Create a whereClause procedure that builds it from textbox values and returns it, 

 Replace the whereClause variable in the URL procedure by a call to the whereClause 

procedure, 

 Then add the Map/list button click handlers to set the selectcolumns  and endURL to the 

right value, and update the textbox with URL. 

 Run and check (step by step) then set URL textbox visibility off. 

Make sure to things step by step with checks for each change. 

 

Display results : 

 

   

    

 

  

 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.23 
 

5.4 Solution 4 : display map with a Canvas component and the statics map API 

5.4.1 General principles 

Solutions 1 and 2 handed control to a web service, with immediate benefit of interactive functions 

provided by the Web site.  Here, the map will be the background picture of a canvas. The app keeps 

control and can add balls and sprites, but we start with a “static” map, it will be the App’s 

programmer job to make it move, there is no website to do the job.  

Let’s start with an example : we want a map around the Eiffel tower and a ball bouncing on the map : 

Create a new App Inventor project, with Screen orientation in “portrait mode” and “Fixed” sizing. 

From the “Drawing and animation” drawer, add a canvas and name it canvasMap and set its width 

and height to “fill parent”. Also add a ball. 

On the blocks side : 

 When screen.initialize, 

 Set the canvas background image to 

https://maps.googleapis.com/maps/api/staticmap?center=Eiffel+tower&zoom=16&size=320x320 

 Set the ball heading to a random value between 1 and 360, and set ist speed to 10 

 When the ball reaches the end, make it rebound, 

 and when user touches the canvas, head the ball towards the point that has been touched. 

 

Run the program, touch the canvas, … 

What are the differences between this and mapping with a Web Viewer ? 

The map is just sitting there, and has no reaction (for now) but App keeps 

control of outputs to the window (add balls or sprites), and also keeps 

control of real time inputs from the window : That means that you can 

build Apps or games which behave according to what happens on the window (like clicks, collisions, 

edges reached, …). This is a key point for games, including geospatial games like Pokemons. 

You may have enough with this map tile, where your hero will play but you may also want to play all 

around the city, looking for treasures with multiple map scales, multiple players and no geographic 

boundary to your game. 

https://maps.googleapis.com/maps/api/staticmap?center=Eiffel+tower&zoom=16&size=320x320


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.24 
 

This is what we will see now, but we have to deal with 2 different subjects : 

 Matching the screen pixel space and the geographic space in degrees or meters 

 Managing maps with the  Static maps API 

5.4.2 Matching spaces : canvas pixels, geographic lat & long and metric coordinates 

Let us consider a game where the map displays my location as well as the location of other players, 

and all sorts of characters with whom we may interact. 

 When writing code for sprites, we will use canvas or pixel coordinates, 

 Our position as well as the position of other players  and characters will be known in degrees 

of longitude and latitude, 

 Maps will be spatially defined by their center in longitude and latitude, with a pixel size 

which depends on the zoom factor, 

 Distances are measured in meters. 

We have what we call different coordinate systems, and we will need conversions to display other 

players (with longitude and latitude coordinates) on our canvas map (with pixel coordinates), or 

when we need to measure a distance in kilometers.  

May be we can remind what are the Longitude, Latitude and altitude of a point : 

 Longitude  is an angle that specifies the east-west position of a 

point on the Earth's surface. 0° at the Prime Meridian in Greenwich. 

It ranges from −180° westward  to +180° eastward. 

 Latitude is an angle that specifies the north–south position of a 

point on the Earth's surface. It ranges from -90° at the south pole, 0° 

at the equator to +90° at the north pole. 

 Altitude is the height in meters above mean sea level (MSL), not to be confused with height 

above ground (AGL). Terrain elevation is the altitude (MSL) of the ground itself 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.25 
 

 

The functions we need an that are provided are :  

 length in meters of a degree of latitude :  degreeOfLatitudeMeters 

 length in meters of a degree of  longitude :  degreeOfLongitudeMeters(latitude) 

 distance in meters between 2 points from their longitude and latitude  

(on the spherical earth) :    distanceMeters(lat1, long1, lat2,long2) 

 width in degrees of a pixel :    pixelWidthInDegrees(zoom) 

 height in degrees of a pixel :    pixelHeightInDegrees(zoom, latitude) 

 size of a pixel in meters :   pixelsizeInMeters(zoom, latitude) 

 longitude of pixel at x : longitudeFromX(x, canvasWidth,centerlat, centerLong,zoom)  

 latitude of pixel at y :  latitudeFromY (y, canvasHeight, centerLatitude, zoom) 

 X pixel coordinate from latitude longitude :   

xFromLatLong (longitude, canvasWidth, centerLatitude, centerLongitude, zoom) 

 Y pixel coordinate from latitude :   

yFromLat (latitude, canvasHeight, centerLatitude, zoom) 

 

Don’t be afraid : You will not have to code these functions, and you do not need to understand the 

details of what is inside. But You need to have a clear view of what they do and when to use them 

(we will see examples). You should also be able to check that they work well on practical cases. There 

has been errors and there still may be. When you reuse : trust but check. 

5.4.2.1 Length in meters of one degree of latitude and of longitude 

As an effort to share universal units, the meter was first defined in 1791 as  

1/10 000 000 of half of a meridian of the earth.  

A degree of latitude is then equal to 10 000 000 m / 90° ~ 111 111 m.  

However, we will here assume a spherical earth with an average radius rounded 

to 6 371 km  

leading to 1° = 111 195 m. The reason is that we want to use a single constant for all formulas :  the 

earth radius.  

A degree of longitude changes with latitude degree of longitude = degree of latitude * cosine 

(latitude)with the corresponding App inventor code here   

The length of a degree of latitude in meters is given by : 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.26 
 

 

The length of a degree of longitude in meters is given by : 

 

 

5.4.2.2 Distance between 2 points known by their longitude  and latitude  

The shortest distance between 2 points over the earth is also called the “great circle” distance 

(different from the straight line through the earth). 

When distances are limited you may use the Pythagorean theorem :  

                   

                                           leading to          

Which has a precision of 1% within 4000 km. 

But we will use the more precise Vincenty formula (see Wikipedia) of the angular distance : 

 

Which we multiply by the radius of the earth, to get the distance in meters. 

The distance in meters between 2 points on the earth known by their longitudes and latitudes  lat1, 

long1, lat2,long2 is : 

 

 

https://en.wikipedia.org/wiki/Thaddeus_Vincenty


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.27 
 

5.4.2.3 Pixel Width and height in degrees of  longitude and latitude 

The operation that converts latitude and longitude () to pixel coordinates (x,y) is the "web 

Mercator" projection (see Wikipedia) with the 

following formulas : 

 

From which follows  in radians :  

 

or for us in degrees : 

 

 

 

5.4.2.4 Pixel size in  meters 

 Pixel height in meters = pixel height in radians multiplied by radius of a meridian [i.e. Rearth] 

 Pixel width in meters = pixel width in radians multiplied by radius of the parallel at given 

latitude [i.e. Rearth * cos() ] 

And we find the same result for width and 

height (i.e. square pixels): 

 

 

5.4.2.5 longitude and latitude from pixel-canvas coordinates  

Canvas pixel coordinates are illustred by the figure on the right 

with origin is top left.  

in green : canvas pixels with center position and x,y number, 

in red : center latitude and longitude, pixel height and width, 

in blue : physical screen coordinates (canvas units). 

When map is oriented north, x increases  with longitude and y 

decreases with latitude (opposite direction). 

For pixel x,y returned by App Inventor blocks it follows : 

https://en.wikipedia.org/wiki/Web_Mercator
https://en.wikipedia.org/wiki/Web_Mercator


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.28 
 

 

longitude from pixel x coordinate and canvas center lat 

 

Latitude from pixel y coordinate 

 

5.4.2.6 pixel-canvas coordinates from longitude and latitude 

Inversion of the previous functions is straightforward,  

a point with  "latitude, longitude" coordinates should be plotted at x, y given by : 

 

If x or y are less than 0 or greater than canvas width or height,  point is out of current map view. 

X pixel coordinate from latitude longitude and  center 

 

Y pixel coordinate from latitude and  center 

 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.29 
 

5.4.3 Static maps and streetview APIs 

 “The Google Static Maps API lets you embed a Google Maps image on your web page without 

requiring JavaScript or any dynamic page loading. The Google Static Maps API service creates your 

map based on URL parameters sent through a standard HTTP request and returns the map as an 

image you can display on your web page.” 

The documentation for the staticmaps and streetview APIs can be found here : 

https://developers.google.com/maps/documentation/static-maps/intro 

https://developers.google.com/maps/documentation/streetview/intro 

 (you can add ?/hl=en  or ?/hl=fr  or ?/hl=es to change the language)   

what is useful for us is : 

The base address (scheme and host)  :   

 for static maps  https://maps.googleapis.com/maps/api/staticmap? 

  or http://maps.google.com/maps/api/staticmap? 

 for streetview  https://maps.googleapis.com/maps/api/streetview? 

  or http://maps.googleapis.com/maps/api/streetview? 

The static maps query fields (separated by ‘&’): 

center :  defines latitude and longitude of map center (e.g. "40.714728,-73.998672").  

It may also be an address (replace space by +) 

size :  rectangular dimensions of the map image (e.g. canvas size) with a string of the form 

{horizontal_value}x{vertical_value}. 

Note : be careful that the size is not too big to avoid delay times with low bandwidth. 

maptype : defines the type of map to construct. We will use and switch between roadmap and 

satellite (also available in API: hybrid and terrain).  

zoom :  defines the display scale from : 0 for world, 10 for cities and  21 for street level. 

Adding 1 to zoom level will divide pixel size by  2. Estimated pixel height and width I 

degrees of latitude and longitude is : 

dplat    = 360 * 0.707 * 2(zoom+8)  in degrees of latitude 

dplong = dplat * cos (latitude) in degrees of longitude 

markers : defines markers overlaid on the map (the ‘|’or %7C  separates multiple values) 

and for the streetview query fields : 

location :  same as center above 

size :  same as above. 

fov :  field of view (default 90°) 

heading :  0 to 360 : 0 north, 90 east, 180 south, 270 west 

pitch :  vertical orientation, 0 by default, values from -90° (down) to 90° (up) 

Note : at the time of writing this tutorial, no API key was necessary. 

https://developers.google.com/maps/documentation/static-maps/intro
https://developers.google.com/maps/documentation/streetview/intro


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.30 
 

5.4.4 Coding exercise  with Static maps and streetview APIs 

5.4.5 TODO 

1. enable variables and constants which will be used : mapViewMode, CANVASVIEW, WEBVIEW  

2. toggle the mapViewMode variable with the BtnMapViewModeToggle button, switch visibility of 

the canvasMap and WebviewerMap accordingly, then call Display. 

3. You can set preferred startup value in the initDisplayParameters procedure  

4. in the  Display procedure, according to the value of mapViewMode branch to : 

o existing webviewer display code, 

o to a new canvas display code where you will set the canvas background image 

(canvasMap.BackgroundImage) to the same URL. 

5. Discuss with peers the difference between canvas and webviewer : 

o Is there a display difference between canvas view mode and webviewer view mode ? 

o what can you do with webview, you cannot with canvas ? 

o what can you do with canvas that you cannot with webview ? 

Discuss with your peers : what do you prefer 

5.4.6 suggested solution 

 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.31 
 

 

5.5 Part 4: pan map horizontally by dragging on the map 

Goal : pan map horizontally with finger dragging – in canvas mode 

We can interact from our App with the canvas map window, with events (dragged, flung,  …), add 

animations (balls, sprites). This is not the case with webviewer  . Web interactions are nice  but 

the app has lost control on window events … 

Matching pixel size with latitude and longitude differences 

We need to know the pixel width and height (in degrees of latitude and longitude) to compute 

the change in latitude and longitude.  

The pixel height dplat and pixel width dplong can be approximated by the following  formulas : 

dplat    = 360 * 0.7 * 2
(zoom+8)  in degrees of latitude 

dplong = dplat * cos (latitude) in degrees of longitude 

or with the App Inventor  language : 

 

(This is an estimate, let us know if you find better). 

When we drag canvas by x,y pixels, the longitude 

and latitude changes (long,lat) will be :    

(longx  * dplat ,lat =y  * dplong)  

in degrees which we will substract to the previous 

values, before calling Display. 

5.5.1 TODO 

1. Code the response to the when canvasMap.dragged event:  

o compute new coordinates of the center : centerLong and centerLat variables  

 compute drag coordinate differences deltax, deltay in pixel coordinates,  

 compute latitude and longitude difference for one pixel dplong, dplat in degrees 

of latitude and longitude (from above formula) 

 then multiply deltax by dplong and deltay by dplat 

  substract  deltax * dplong from centerLong 

  add from deltay * dplat from centerLat,  

(remember y axis on tablet goes down from top) 

o call Display. 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.32 
 

5.5.2 suggested solution 

add following event handler (no other change) 

 

 

 

5.6 Part 5 : add streetview display as a new map type 

5.6.1 TODO 

 Enable the STREETVIEW constant set to “streetview”, and of the pitch, heading and fov variables 

with initial values (pitch =0 for horizontal , heading = 0 for north) 

 add STREETVIEW to the list of maptypes (set btnMapType.elements) 

 when btnZoom.Click : if in streetview mode, decrease fov by 10% (with 45° lower limit) 

 when btnunZoom.Click : if in streetview mode, increase fov by 10% (with 120° upper limit) 

 when canvasMapDragged : if in streetview  mode, change heading and pitch 

 substract to heading fieldOfView *deltax /canvaswidth 

 add to pitch fieldOfView *deltay /canvaswidth 

 Write the httpStreetViewURL procedure to build the URL with 

scheme, host and path : https://maps.googleapis.com/maps/api/streetview? 

then query parameters : location, size, fov (field of view), heading and pitch 

 In Display Procedure, set URL to httpMapURL or httpStreetviewURL if maptype si STREETVIEW 

https://maps.googleapis.com/maps/api/streetview


4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.33 
 

5.6.2 suggested solution 

 

5.7 part 6 (optional) : display a list of markers on the map 

Goal :  add display of a marker for each place (with different color) in the httpMessageMap 

procedure. 

Note : We can do this with the URL or with image sprites (in which case you need to go from 

latitude, longitude to pixel coordinates, which is the reverse of what has been done 

previously when dragging). We will do it here with URL 

5.7.1 TODO 

 Create a  procedure addMarkersToMapURL which returns the url with added markers (one 

for each place) 

 Call this procedure after creating the basic httpMapURL 

Note :  this is not quite straightforward because we have used function which return a value 

(url) and we also avoided global variables 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.34 
 

5.7.2 suggested solution 

 

 

5.8 part 7 (optional) : make your display routine generic and reusable 

 Make the display procedure independent of the calling background, so that it can easily be used 

with some “interface documentation” 

6 Appendix 

6.1 Reminder on a few good practices 

6.1.1 CONSTANTS and variables  

Whenever a value (text or number) has an important significance or may be used as input besides 

display, define it as a variable or as constant if it does not change troughout the App. This will avoid 

spelling errors and will make your program safer and easier to read and debug. 

Naming conventions : 

o write constants in CAPITAL letters with ‘_’ to separate words,ex : MY_CONSTANT 

o start variables with lower case letter, use upper case letter to separate words, ex : myVariable 

o do not use spaces in variable names. 

Practical application : 

 Each place (in the list of places) is a list with name, latitude and longitude as indexes 1,2,3. These 

indexes should be initialized as global constants : 

PLACE_NAME_INDEX = 1, PLACE_LAT_INDEX =2  and PLACE_LONG_INDEX =3. 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.35 
 

 To avoid errors when building URLs or when branching  according to maptype or viewmode , we  

should alos define these values as constants :  

ROADMAP = roadmap, SATELLITE = satellite, HYBRID =hybrid , TERRAIN =terrain 

CANVASVIEW =canvasview,  WEBVIEW = webview 

Names of these constants should be self explanatory, and there is no spelling mistakes possible. 

6.1.2 Procedures an local variables 

You should isolate functions in a procedure when the corresponding code :  

 is doing something important or special, such as building a URL in a function such as 

  or  which will return the URL to the caller 

 or has shared interest such as  which returns nothing but does what is 

necessary on startup for display. If something needs to be done once for display (such as taking 

into account tablet configuration), do it there. You will know where to look for afterwards, 

 or is doing something with common interest or used often as will be the case for    

Defining procedures often goes with defining variables as local (inside a procedure) or global (i.e. 

known by all). Current practice for new programmers is to use global, but as you become a pro and 

want to share your code with others, think of the following : 

 A global variable is known by all App components which may be necessary. But it may also be 

changed at anytime by any component. If this happens, you may be in trouble …because you may 

not know where to look to debug, 

A local variable is protected from external access (which may not be adequate) but it is then 

protected. You should make this choice when possible. For example the URL or  httpMessage 

variable is only necessary in the Display procedure and can be initialized at the beginning of this 

procedure :  

Local variables will contribute to cleaner code, avoiding variables all over the place, and you do not 

remember which procedures uses them. 

One way to switch from global to local variables is to use calling parameters. An example could be a 

display function on canvas which uses no global variables : 

 

Think that if your procedure relies on NO external or global information, it will then be very easy to 

reuse by for friends. 

6.1.3 Ordering blocks on screen 

As you add on events, procedures and variables, your code becomes harder and harder to read., So 

that you have to find some kind of organization … You can agree on one or the other with people you 



4 ways to map with App Inventor : Web viewer, Start activity, fusion tables and Canvas static maps and streetview APIs 

Pierre Huguet 20/12/2016  p.36 
 

work with. What’s most important is to share the same principles when working together. The 

following principles have been used for the current lesson : 

Organize blocks by domain from left to right : 

o Application data management (i.e. places)  : initialize, backup, access, selection 

o application management : startup and initialize and exit App 

o Display functions 

o GPS functions (not in this lesson) … 

 Then from top to bottom  

o Initialize CONSTANTs 

o Initialize global variables 

o Events  

o Procedures2 

The next  figure shows a possible block organization for the result of this lesson : It reads from left to 

right and from top to bottom, with constants and variables placed on top of the domain where they 

are used and procedures below events which uses them.

                                                           
2
 The init procedure for each domain may be practical above events because it comes first and only once. 



Static maps and streetview APIs with the Webviewer and canvas components 

Satic maps and streetview APIs with the Webviewer and canvas components   37 
 



Static maps and streetview APIs with the Webviewer and canvas components 

Satic maps and streetview APIs with the Webviewer and canvas components   38 
 

6.2 General Definitions 

6.2.1 Web API : Application Programming Interface (written from Wikipedia) 

An API is a set of routine definitions, protocols, and tools for building software and applications. It 

defines the functionalities that an external software component (ex : web services) makes available 

with its operations, inputs, outputs, …  

APIs are one of the most common ways technology companies integrate with each other. 

When used in the context of web development, an API is typically defined as a set of Hypertext 

Transfer Protocol (HTTP) request messages, along with a definition of the structure of response 

messages, which is usually in an Extensible Markup Language (XML) or JavaScript Object Notation 

(JSON) format. (note : for the static maps API, the response is an image). 

In our case, it will be more simple, staticmaps and streetview APIs will return images.   

"Web API" historically has been virtually synonymous for web service. 

6.2.2 What is a URL (Uniform Resource Locator) and how to build it 

A URL, or commonly a web address, is a reference to a web resource that specifies its location on the 

network and a mechanism for retrieving it (a URL is a form of URI). URLs occur most commonly to 

reference web pages (http), but are also used for file transfer (ftp), email (mailto), database access 

(JDBC), and many other applications. 

URLs were defined in 1994 by Tim Berners-Lee, the inventor of the World Wide Web. 

HTTP URLs conforms to the following generic (URI) form : 

 scheme:[//[user:password@]host[:port]][/]path[?query][#fragment] 

It comprises : 

 a scheme : here  ‘http’, but may be :  ‘ftp’, ‘mailto’, ‘file’ and ‘data’ 

 // : required by some schemes. When authority is absent, path cannot begin with // 

 an authority with : 

o  optional authentication: user name and password, separated by a colon, then @ 

o "host", consisting of a registered name (or an IP address) 

o optional port number, separated from the hostname by a colon 

 a path, to the data, usually in hierarchical form, as segments separated by slashes. The path 

must begin with a single slash (/) if an authority part was present, and may also if not, 

 an optional query, separated from the preceding part by a question mark (?). see beIow.  

 an optional fragment (not used here). 

for example :  

     https://maps.googleapis.com/maps/api/staticmap?center=37.7766,-122.4506&size=320x320&zoom=14&maptype=roadmap 

https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/World_Wide_Web
https://maps.googleapis.com/maps/api/staticmap?center=37.7766,-122.4506&size=320x320&zoom=14&maptype=roadmap


Static maps and streetview APIs with the Webviewer and canvas components 

Satic maps and streetview APIs with the Webviewer and canvas components   39 
 

scheme,//,               host           ,                path                  ,                  query                                                                 

6.2.3 the Query string within a URL : (written from Wikipedia)  

The query string is the part of a URL, which contains data that does not fit conveniently into a 

hierarchical path structure, and specifies user’s criteria. The query string commonly includes fields 

added to a base URI or URL. Its syntax is not well defined, but is most often a sequence of attribute–

value pairs separated by a delimiter. 

When a form containing the fields field1, field2, field3 is submitted, the content of the fields is 

encoded as a query string as follows:    field1=value1&field2=value2&field3=value3... 

For example in the following URL (which you can copy/paste into your web browser address), the 

query string is what follows the question mark and the delimiter between attribute-value pairs is ‘&’ 

https://maps.googleapis.com/maps/api/staticmap?center=37.777,-122.451&size=320x320&zoom=14&maptype=roadmap 

o The query string is composed of a series of field-value pairs. 

o Within each pair, the field name and value are separated by an equals sign, '='. 

o The series of pairs is separated by the ampersand, '&' 

When fields have multiple values a delimiter is used. For example the ‘|’ character  separates 

coordinate values in the  static maps API, in a list of “markers” coordinates : 

&markers=color:blue|label:x|37.78,-122.46|37.77,-122.46|37.78,-122.45 

6.2.4 the Query string within a URL : (written from Wikipedia)  

The query string is the part of a URL, which contains data that does not fit conveniently into a 

hierarchical path structure, and specifies user’s criteria. The query string commonly includes fields 

added to a base URI or URL. Its syntax is not well defined, but is most often a sequence of attribute–

value pairs separated by a delimiter. 

When a form containing the fields field1, field2, field3 is submitted, the content of the fields is 

encoded as a query string as follows:    field1=value1&field2=value2&field3=value3... 

For example in the following URL (which you can copy/paste into your web browser address), the 

query string is what follows the question mark and the delimiter between attribute-value pairs is ‘&’ 

https://maps.googleapis.com/maps/api/staticmap?center=37.777,-122.451&size=320x320&zoom=14&maptype=roadmap 

o The query string is composed of a series of field-value pairs. 

o Within each pair, the field name and value are separated by an equals sign, '='. 

o The series of pairs is separated by the ampersand, '&' 

When fields have multiple values a delimiter is used. For example the ‘|’ character  separates 

coordinate values in the  static maps API, in a list of “markers” coordinates : 

&markers=color:blue|label:x|37.78,-122.46|37.77,-122.46|37.78,-122.45 

https://maps.googleapis.com/maps/api/staticmap?center=37.777,-122.451&size=320x320&zoom=14&maptype=roadmap
https://maps.googleapis.com/maps/api/staticmap?center=37.777,-122.451&size=320x320&zoom=14&maptype=roadmap


Static maps and streetview APIs with the Webviewer and canvas components 

Satic maps and streetview APIs with the Webviewer and canvas components   40 
 

6.2.5 URL encoding 

Some characters cannot be part of a URL (for example, the space) and some other characters have a 

special meaning in a URL: for example, the character # can be used to further specify a subsection (or 

fragment) of a document. In HTML forms, the character = is used to separate a name from a value. 

The URI generic syntax uses URL encoding to deal with this problem, while HTML forms make some 

additional substitutions rather than applying percent encoding for all such characters. SPACE is 

encoded as '+' or "%20". 

 Letters (A–Z and a–z), numbers (0–9) and the characters '*','-','.' and '_' are left as-is 

 SPACE is encoded as '+' or '%20' 

 All other characters are encoded as %HH hex representation 

 

Values for reserved characters after percent-encoding   

! # $ & ' ( ) * + , / : ; = ? @ [ ]   

%21 %23 %24 %26 %27 %28 %29 %2A %2B %2C %2F %3A %3B %3D %3F %40 %5B %5D   

 

Values for other characters after percent-encoding (neither reserved or non reserved) 

newline space " % - . < > \ ^ _ ` { | } ~ 

%0A or %0D or %0D%0A %20 %22 %25 %2D %2E %3C %3E %5C %5E %5F %60 %7B %7C %7D %7E 

 

Characters outside the list of NON-reserved character (A–Z and a–z, numbers 0–9 , '*','-','.','_' see 
above) should be encoded. Reserved characters MUST be.  

For the following example ‘|’ should be encoded to %7C (but it seems to work in App inventor if you 
do not). On the contrary, if there is a blank space in the URL, it will not (try it). 

Note :  web browsers are more tolerant … they may remove inadequate “space”. A wrong message 
may work with your browser and not in your app inventor program. Use your text editor to 
show hidden characters and build your URI step by step. 

Sample URL with multiple markers (added linefeeds to be removed): 

https://maps.googleapis.com/maps/api/staticmap? 

center=37.7766,-122.4506 

&size=320x320&zoom=14 

&maptype=roadmap 

&markers=color:blue|label:x|37.78,-122.46|37.77,-122.46|37.78,-122.45|37.77,-122.45|37.78,-122.44|37.77,-122.44 

https://en.wikipedia.org/wiki/Character_%28computing%29
https://en.wikipedia.org/wiki/Fragment_identifier
https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters
https://en.wikipedia.org/wiki/Hexadecimal

